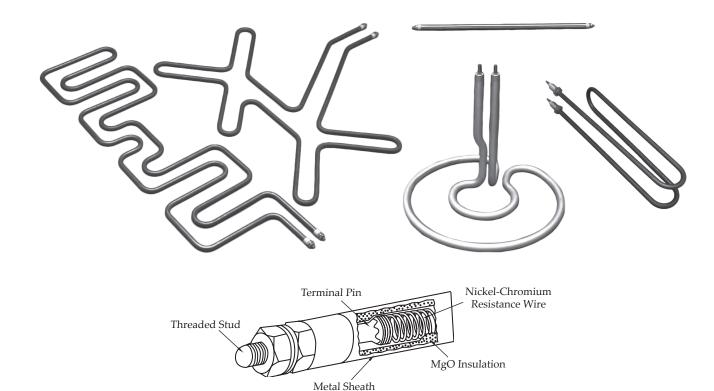


GORDON HATCH CO. INC.

Representing quality products since 1941

Tubular Heaters


closing the loop on thermal solutions

INTRODUCTION

Highly versatile and economical Durex tubular heating elements are applied in virtually every conceivable type of heating application. These robust heaters are a reliable thermal source used to heat a multitude of liquids, gases, and solids and can be applied straight or bent into complex formations. Tubular heaters are also used for radiant heating in open air or in vacuum atmospheres. The elements can be cast into or clamped onto metal to form heated parts. A wide selection of standard designs are available or they can be custom designed for your requirements. Durex Industries' application and design engineering team are available to assist in specifying the proper heater configuration.

Design Features

Precision helical wound nickel-chromium resistance wire

• Provides uniform thermal profile

Circumferential cold pin-to-wire fusion weld

Ensures robust connection for long heater life

Compacted, high purity MgO dielectric insulation

• Extends resistance wire life at high temperatures

Recompacted bends

• Provides longer life by ensuring insulation integrity

UL & CSA recognized elements available

Assures safe and reliable performance

Typical Applications

- Metal mold, die and platen heating
- Medical and analytical device heating
- Cast into metal parts and platens
- Cut and seal heads on packaging equipment
- Tank wall and pipe heating
- Liquid immersion & circulation heaters
- Furnace & oven heating
- Comfort heating and freeze protection
- Process air and gas heating
- Thermoforming, curing, drying

Toll free: ph 800-925-4328 Local: ph 262-253-4800 Email: info@gordonhatch.com

Tubular Heaters

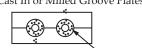
closing the loop on thermal solutions

TUBULAR HEATER SPECIFICATIONS

Physical and Electrical Specifications

Sheath Diameter +-0.005" (+-0.13mm)	0.260" (6.60mm)	0.315" (8.00mm)	0.375" (9.52mm)	0.430" (10.92mm)	0.475" (12.07mm)	0.496" (12.60mm)	
Sheath Length Max.	404" (10,260mm)	370" (9398mm)	337" (8560mm)	329" (8356mm)	281" (7137mm)	263" (6680mm)	
Maximum Voltage	250	480	480	600	600	600	
Maximum Amperage	15	30	30	40	40	40	
Wattage Tolerance		Industry Standard +5% -10%					
Resistance Tolerance		Industry Standard +10% -5%					

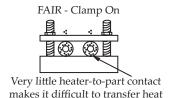
Length Specifications


Overall Sheath Length	11-20"	21-50"	51-80"	81-110"	111-140"	141-170"	171-200"	201" & up
Sheath Length	± 3/32"	± 1/8"	± 5/32"	± 3/16"	± 7/32"	± 1/4"	± 3/8"	± 1/2"
Heated Length	± 1/4"	± 1/2"	± 7/8"	± 1 1/8"	± 1 ³ / ₈ "	± 1 5/8"	± 1 7/8"	± 2 3/8"
Minimum Unheated	1"	1 1/4"	1 ½"	1 5/8"	1 3/4"	2"	2 1/4"	2 ½"

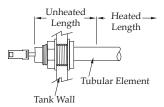
APPLICATION GUIDELINES

Heating Metal Parts

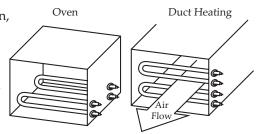
Below are the installation methods for heating metals in order of best to least effective.



Excellent contact along heater sheath


Air gaps reduce heat transfer

Durex recommends to "press fit" the tubular element into milled groove plates for extended heater life. Ensure that all heated portions of the heater are in contact with the part. Heat transfer cement should be used to promote heat transfer. If clamps are used, they should be closely spaced and not over tightened to ensure good heater-to-part contact. Allow for up to 10% length increase due to thermal expansion during heating.


Heating Liquids

To prevent overheating or fouling the heater element, ensure the heated portion of the tubular heater is immersed in liquid AT ALL TIMES. For optimal results, properly match the sheath material and heater watt density to the liquid application. Factory installed fittings or field installed compression fittings are used to mount and seal the tubular element against the tank wall. Refer to the Immersion, Circulation and Over-The-Side Heater sections of the catalog for other liquid heating products.

Heating Air & Gases

Tubular elements are typically formed into a "U" hairpin or other formation, installed through wall openings and secured with lock washers, clips, threaded fittings, mounting bracket or flange. For optimal results, use an Incoloy® sheath and ensure reasonable watt densities are used. Allow for 10% length increase due to thermal expansion. For horizontal installations, provide supports at least every 18" of length to avoid element sagging due to high temperatures. Refer to the Circulation and Duct Heater sections of the catalog for forced air and gas heating products.

GORDON HATCH CO. INC.

Tubular Heaters

closing the loop on thermal solutions

APPLICATION GUIDELINES

Radiant Heating and Vacuums

Tubular heaters used for radiant heating typically use reflectors to direct heat ener- REFLECTIVE RADIANT HEATER gy toward the part being heated. This works well for warming, drying and curing applications. However, when using heaters in a vacuum, the only heat transfer is through radiation, so reduce watt density by 20% to 30% versus air heating. Aluminum sheath as well as Inconel® sheathed heaters are typically used with vacuum Heating feed through assemblies. Durex can test and measure vacuum leakage rates down to 8x10⁻⁸ SCCS He (3x10⁻⁶ Pa l/s).

General Temperature and Watt Density Guidelines

Tubular Sheath & Watt Density Guidelines

Heated Medium	Process Temperature °F (°C)	Sheath Material	Max. Watt Density W/in ² (W/cm ²)
	Solids		
Clamp On to Metal	To 500 (260) To 1000 (540)	Incoloy®	20 (3) 10 (1.5)
Milled Groove Molds, Etc.	To 500 (260) To 1000 (540)	Incoloy®	60 (9) 30 (4.5)
Vacuum Platens	To 650 (345) To 1000 (540)	Aluminum, SS Incoloy® or Inconel®	40 (6) 20 (3)
	Liquids		
Clean, Potable Water	To 212 (100) To 500 (260)	Copper Incoloy®	60 - 90 (9 - 14) 30 - 40 (4.5 - 6)
De-I Water	To 212 (100)	316SS	60 (9)
Process Water & Very Diluted Corrosives	To 200 (95)	304SS or Incoloy®	48 (7.5)
Mild or Dilute Acids & Alkalies	To 200 (95)	Incoloy®, 316SS or Inconel®	15 - 23 (2.3 - 3.5)
Oils (Depends on Type & Use)	50 - 600 (10 - 315)	Steel	6 - 23 (1 - 3.5)
	Air		
Ovens, Natural Convection	vens, Natural Convection To 700 (370) To 1200 (650)		30 (4.5) 10 (2.3)
Flowing Air @ min. 500 fpm	To 800 (425) To 1000 (650)	Incoloy®	30 (4.5) 23 (3.5)

Maximum Recommended Sheath Temperatures

Sheath Material	Maximum Temperature in Air °F (°C)	Typical Applications	
	Standard Ava	ilable Sheath Materials	
Copper	350 (175)	Clean, potable water heating	
Aluminum	750 (400)	Vacuum platens	
Steel	750 (400)	Oils, glycol, molten salts, non-corrosives	
304 SS	1200 (650)	Improved corrosion resistance over steel	
316 SS	1200 (650)	De-ionized water and some corrosives	
Incoloy® 840	1600 (870)	Improved corrosion resistance over steel and 304SS	
Incoloy® 800	1600 (870)	Improved resistance to chloride attack, other corrosives	
	Other Avail	able Sheath Materials	
321 SS	1200 (650)	Improved corrosion resistance over steel and 304SS	
Incoloy® 825	1600 (870)	Highly resistant to many acids, salts and other media	
Inconel® 600	1800 (980)	Highly resistant to many acids, salts and other media	

Toll free: ph 800-925-4328 Local: ph 262-253-4800 Email: info@gordonhatch.com

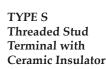
Tubular Heaters

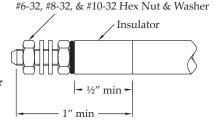
closing the loop on thermal solutions

CONSTRUCTION OPTIONS

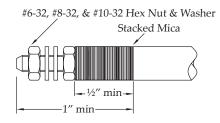
Unheated Length

The unheated length can be varied to suit application requirements. Longer unheated sections are often used to keep the termination area cool or to focus heat generation in a specific area of the part or media being heated.

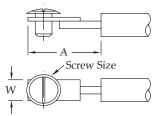

Distributed Wattage

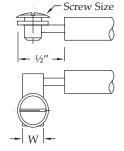

Durex tubular heaters can be tailor-made to vary the watt density along the length of the heater. This aids in temperature uniformity in mold applications or to make up for heat losses close to the ends.

Sheath Treatment and Finish

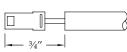

For pharmaceutical and other "clean" applications, a bright anneal finish can be supplied. Also available, depending on configuration, is sheath passivation which removes any free iron that may stain or rust the finish of the sheath.

TERMINATION OPTIONS

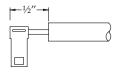



TYPE S1 Threaded Stud Terminal with Stacked Mica

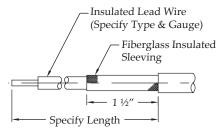
TYPE L Screw Lug Terminal



TYPE L1 Screw Lug Terminal 90°



Screw Size	Dia.	A	W
#8-32	To 0.315"	7/8"	5/16"
#10-32	0.375" and above	1 1/16"	⁷ / ₁₆ "
	Maximum 240V		



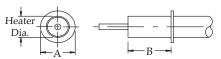
TYPE D1 Quick Connect 90°

Maximum 240V

TYPE W Leadwire Terminal Assembly

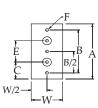
Type	Insulation	Max. Temperature	Volts
WS	Silicone	390°F (200°C)	600V
WF	Fiberglass	480°F (250°C)	600V
WM	Mica/Glass	840°F (450°C)	600V

Note: If protective armor cable (hose) is required, please consult factory.



ubular Heaters

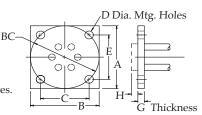
closing the loop on thermal solutions

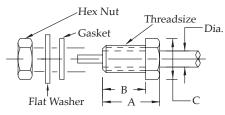

MOUNTING OPTIONS

TYPE R **Locator Washers**

Heater Dia.	A	В
0.260"	3/4"	Specify
0.315"	5/8"	Specify
0.375"	3/4"	Specify
0.430"	3/4"	Specify
0.475"	3/4"	Specify

TYPE K **Mounting Bracket**




Specify all required dimensions and tolerances.

TYPE F Mounting Flange

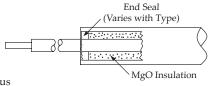
Specify all required dimensions and tolerances.

TYPE B Threaded Bulkhead **Fittings**

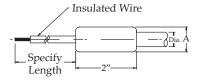
Type	Material
BB	Brass
BS	Steel
B4	304SS

Dia.	Thread	A	В	С
0.260"	1/2 - 20	3/4"	5/8"	3/4"
0.315"	1/2 - 20	3/4"	5/8"	3/4"
0.375"	5/8 - 18	15/16"	3/4"	7/8"
0.430"	5/8 - 18	15/16"	3/4"	7/8"
0.475"	3/4 - 20	1"	7/8"	1"

SEAL OPTIONS

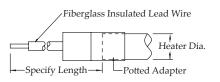

TYPE G - Silicone Conformal Coating - General Protection, Porous

Max. temperature: 220°F (105°C)


TYPE E - Epoxy Seal - Moisture and Contamination Resistant (better choice for long-term moisture resistance), Low porosity Max. temperature: 450°F (230°C)

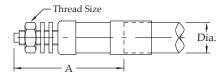
TYPE V - Silicone RTV - Moisture and Contamination Protection, Porous

Max. temperature: 400°F (200°C)



Dia.	A
0.260"	7/16"
0.315"	⁷ / ₁₆ "
0.430"	5/8"

TYPE PA **Potted Adapter**


Potted protection tube ensures an integral bond between wire insulation, the seal, and protective sleeving that may be required.

- Type PS is silicone RTV and silicone insulated lead wire
- Type PP is epoxy coating and Fiberglass insulated lead wire
- Type PT is epoxy coating and Teflon® insulated lead wire

TYPE HS

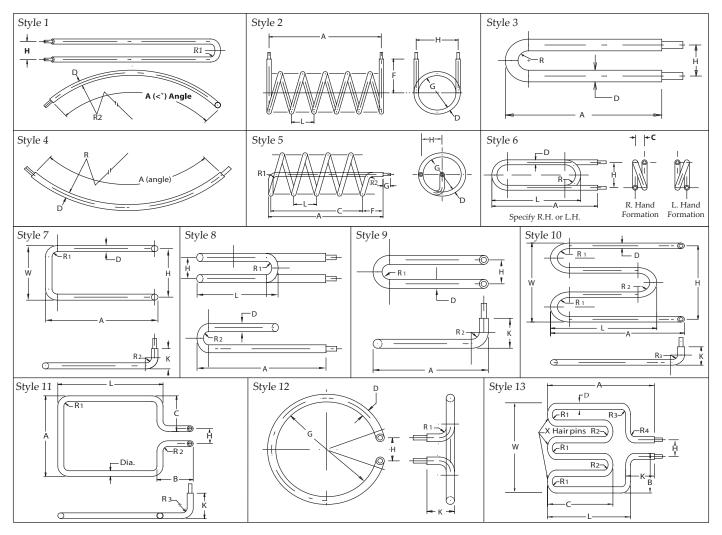
Ceramic to Metal Hermetic Terminals

Thread Size	Dia.	W
#8-32	0.260"	1 ¾"
#10-32	0.315"	1 1/8"
#1/4-28	0.430"	2 1/8"

Click Here to Contact Us!

closing the loop on thermal solutions

BENDING OPTIONS

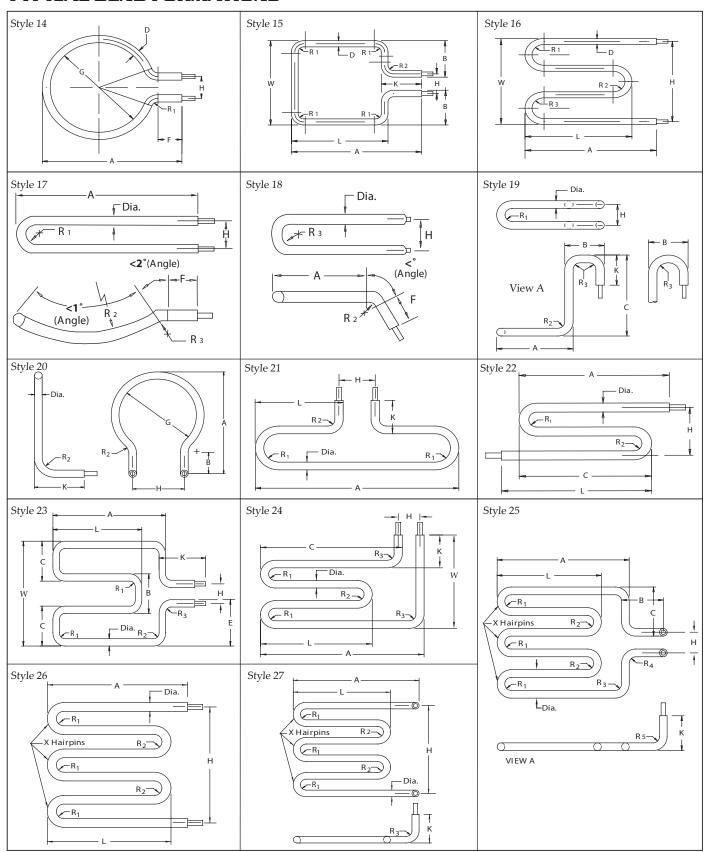

Tubular elements can be formed into 2-D and 3-D shapes to better suit application requirements. Typical bend configurations are shown across the following pages. Ensure to allow for up to 10% dimensional increase due to thermal expansion and to provide adequate support to prevent element sagging due to high temperatures. If field bending of straight elements is necessary, contact Durex for field bending guidelines prior to bending. Also specify "full sheath anneal" on the order to allow for field bending.

Bend Tolerances for Incoloy® and Stainless Steel Sheath Elements

Bend Data Reference	Heater Diameter						
bend Data Reference	0.260"	0.315"	0.375"	0.430"	0.475"	0.490"	
Minimum Bend Radius Standard	0.437"	0.562"	0.687"	0.75"	0.812"	0.875"	
Minimum Bend Radius w/Repressed Bend	0.375"	0.50"	0.562"	0.625"	0.687"	0.75"	
Standard Bend Tolerances	±1/8"	±1/8"	±1/8"	±1/8"	±1/8"	±1/8"	
Special Bend Tolerances	±1/16"	±1/16"	±1/16"	±1/16"	±1/16"	±1/16"	
Precision Bend Tolerances w/Tooling	±0.005"	±0.005"	±0.005"	±0.005"	±0.005"	±0.005"	

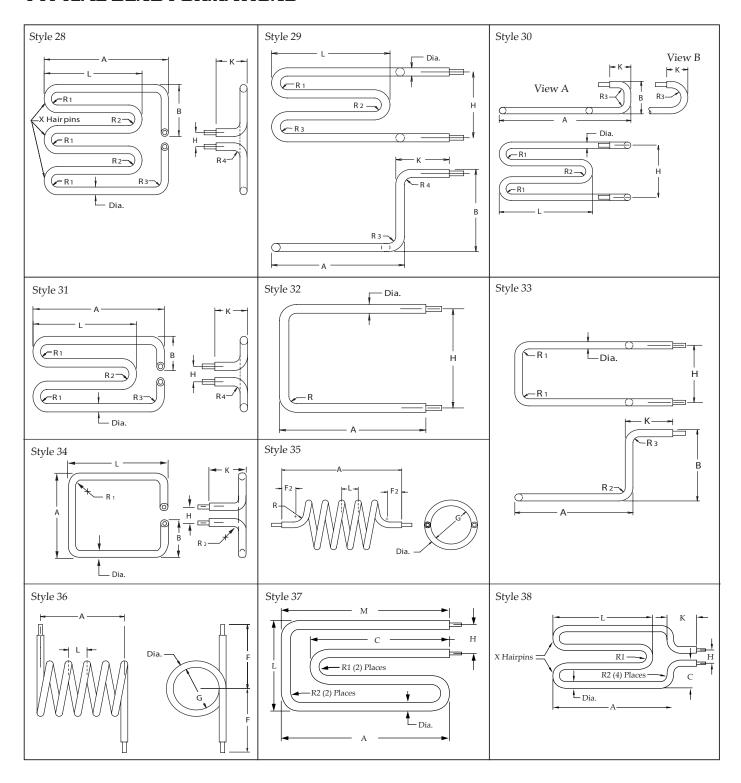
Note: Tighter bend radii possible for steel and copper sheath elements. Please consult Durex for more information.

TYPICAL BEND FORMATIONS


Toll free: ph 800-925-4328 Local: ph 262-253-4800 Email: info@gordonhatch.com

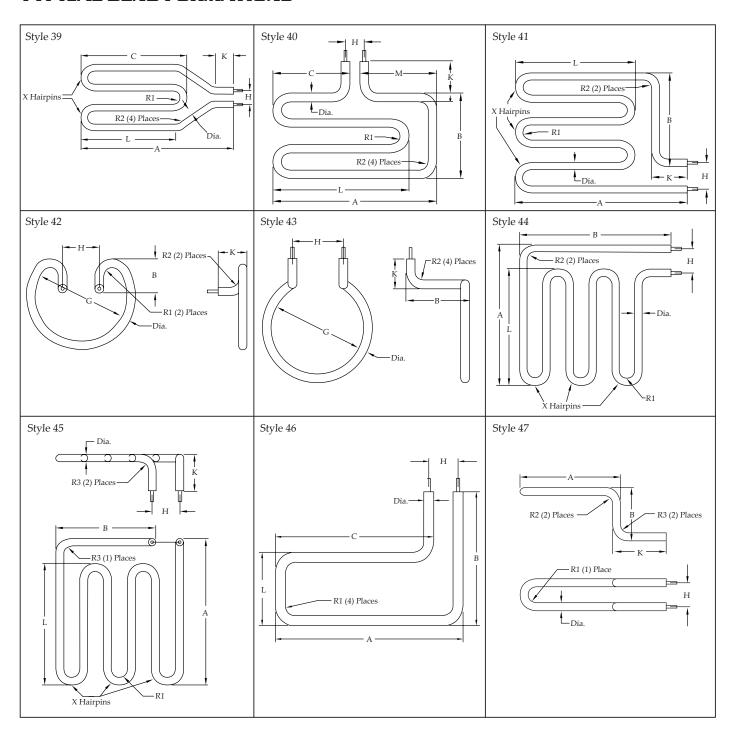
closing the loop on thermal solutions

TYPICAL BEND FORMATIONS



closing the loop on thermal solutions

TYPICAL BEND FORMATIONS



closing the loop on thermal solutions

TYPICAL BEND FORMATIONS

